

What Is a Corridor?

"A broad geographical band that follows a general directional flow connecting major sources of trips that may contain a number of streets, highways and transit route alignments."

From "Glossary of Regional Transportation Systems Management and Operations Terms" (TRB Circular)

How Travelers Use a Corridor

- Travelers view the transportation network as a whole
- When faced with congestion on one facility, travelers may respond by
 - → Selecting a different facility (transit or roadway),
 - → Adjusting their trip to another time of day, or
 - → Remaining on their current route
- Should we manage the corridor to reflect how travelers use it?

Corridor Management

- Corridors offer opportunities to operate and optimize the entire system
 - → Beyond individual networks
- ▶ Transportation corridors often contain unused capacity
 - → Parallel routes
 - → Non-peak direction
 - → Single-occupant vehicles
 - → Underutilized transit services
- Managing the corridor can more fully utilize this capacity
 - Management approaches like ramp metering
 - → Traveler information and outreach

Active Traffic Management

What Is Active Traffic Management?

Traffic management concepts intended to:

- ► Enhance roadway safety
- Reduce congestion
- Provide reliable trips
- Provide enhanced information to motorists
- Leverage available capacity during periods of congestion or incidents

M 42 Speed Harmonization and hard shoulder lane in England. (UK Highways Agency)

Examples of ATM

- Lane-use control
- Variable speed limits / advisories
- Queue warning
- Hard shoulder running
- Dynamic re-routing
- Junction control
- Adaptive ramp metering

Active Traffic Management is not limited to urban areas!

Active Traffic Management Simulation

Scenario 3: Two-Lane Incident Closure with Congestion

Active Traffic Management Simulation

Scenario 5A: Add Lane To Drop Lane - Closed Scenario 6A: Add Lane and Drop Lane - Open

Examples of ATM in the US

- ▶ Seattle
- ► Minneapolis
- ►I-66 (Northern Virginia)
- ► Los Angeles
- ▶ Dallas "Horseshoe"
- ▶ Denver
- ►Utah I-80 Parley's Canyon

- ►I-80 (SF Bay Area)
- New York Long Island Expressway
- ► Philadelphia I-95
- ▶ Portland, OR
- ▶ New Jersey
- ▶I-80 Wyoming
- ▶ Others?

Many examples in Europe and around the world!

Variable Speed System on Rural Corridors

I-80 in Wyoming

I-80 in Utah, Parley's Canyon

Wyoming I-80

- ► AADT 11,000
- <50% of I-80 traffic is heavy trucks</p>

Significantly reduced crashes for trucks and other vehicles

I-80 Integrated Corridor Mobility

Freeway Infrastructure

DOWNTOWN SF

VIA 80

XX MIN

VIA 880

XX MIN

VIA 👸

XX MIN

SAN JOSE

VIA 880

XX MIN

VIA

XX MIN

I-80 Corridor

- ► Institutional Environment
 - → 1 DOT, 9 cities, 2 MPOs, 2 transit agencies
 - → Different stages of infrastructure
- Staging of implementation
 - → Arterials first, freeways next (some delays due to concrete piles)
 - → Some equipment went out of warranty before complete
- Maintenance
 - → MOU for local agencies
 - → Regional maintenance agreement for maintenance funding

OR217 Portland, OR

- ► Launched July 2014
- ▶7.5 miles, 110,000 AADT
- Incorporated travel times
- Variable speeds
- Enhanced existing adaptive ramp metering system

Metering rates adjustable through corridor

WSDOT's Smarter Highways

- ► Variable speed limits, lane control, traveler information
- Reduce speeds approaching congestion, crashes, work zones
- Warn motorists of downstream queues
- Display which lanes are open, closed, and closed ahead
- Primary objective is safety improvement

ATM in Action in Seattle Area

Los Angeles Junction Control

- ► NB SR 101 to NB I-5 connector
- High collision experience
- ▶ Congestion
- High ramp demand

Re-stripe Connector to Two Lanes

Replace Crash Attenuators

The Use of ATM is Expanding

ATM has moved beyond stand alone implementations

► ATM is compatible with other

combined, integrated approaches

- → Traffic incident management
- → Work zone traffic management

Ramp Metering

- Reduces overall freeway congestion by managing the amount of traffic entering the freeway and by breaking up platoons
- Algorithm determines entrance rate based on mainline volume, speed, queue length
 - → Objective is to limit the amount of traffic entering freeway to minimize flow breakdown
- Widely used throughout California
- What about the Altamont Corridor?

Ramp Metering Benefits

- Mobility, Reliability, and Efficiency
 - → Reduced travel times
- Safety
 - □ Crash reduction
- Reduced Environmental Impacts
 - → Reduces stop-and-go conditions
- Low cost with High Benefit/Cost Ratio
 - → Cost effectiveness
 - → Twin Cities metering had B/C ratio of 15:1
- Probably the most proven freeway management strategy

 - → Reduced environmental documentation

Ramp Meter Safety Benefits

Location	Benefit
Portland, OR	43% reduction in peak period collisions
Minneapolis, MN	24% reduction in peak period collisions
Seattle, WA	39% reduction in collision rate
Denver, CO	50% reduction in rear-end collisions
Detroit, MI	50% reduction in total collisions and 71% reduction in injury collisions
Long Island, NY	15% reduction in collision rate

Public Perception Challenges

- Understanding of Purpose and Benefits
- Metering during congested vs noncongested time-of-day
- Comparisons to adjacent ramp conditions
- Metering congested vs non-congested roadways

Is ATM the Right Solution?

- ►ATM sounds great! How do I get started?
- ► Important considerations:
 - What roadway networks and facilities would be best suited for ATM in my region?
 - What specific or combination of ATM strategies would work best?
 - What would be the range of expected benefits?
 - → What would be the expected costs (capital and ongoing)?

Guidance Document

ATM Feasibility and Screening Guide

http://www.ops.fhwa.dot.gov/publications/fhwahop14019/fhwahop14019.pdf

Success Factors

- ► High traffic volumes
- Changes in prevailing conditions
- ► High prevalence of crashes
- ▶ Bottlenecks
- Adverse weather
- Variability in trip reliability
- ► Construction impacts
- Financial constraints
- Limitation in capacity expansion

Examples of ATM Benefits in US

I-5 Seattle

- ▶ 4.1% reduction in crashes
- ▶ 4.4 % increase in crashes on SB segment of I-5 (no ATM)

Minneapolis

- ▶ 20+ % decrease in PDO crashes
- 17% less congestion during AM peak

OR217 Portland

- 21% reduction in crashes
- 5% increase in throughput during peak period
- 10% reduction travel time variability

LA Junction Control

- ▶ NB SR-110 to NB I-5
- Average ramp delay decreased from 20 minutes to 5 minutes
- ▶ 30% decrease in crashes

Chicago Bus on Shoulder

- ► On-time performance from 68% to 92%
- No adverse impact on safety

Cost Considerations

- Gantries and signs
 - Need to make assumptions on spacing and layout
- Widening, refuge areas, shoulder treatments
 - → Environmental issues
- Ramp treatments
- ► Traffic signal controllers
- Detection
- Communications / power

- ▶ New software
 - Automated algorithms / decision support
- Systems engineering activities
- Public outreach
- On-going operations and maintenance
 - □ Training
- Contingency

Assumptions on Gantry Spacing and Layout

- Concerns with costs of frequent full gantries
- ► MUTCD requirements on guide sign distances

 → 600 to 800 feet
- Significant testing in UK of different spacing / layouts
 - → Driver simulations
 - Visualization / response monitoring software

Moving towards more of a **HYBRID** approach ("ATM Lite")

- Longer spacings between full gantries (e.g., after on ramps)
- Use of side-mounted signs in-between
- Significant reduction in costs

WSDOT Outreach Examples

- Smarter highways video on Youtube http://www.youtube.com/wsdot#p/u/12/cd0doR0Ga-I
- Smarter highways www.smarterhighways.com
- ▶ Posted links on Twitter, Facebook and WSDOT blog
- ► Outreach to cities, counties, businesses, colleges

Group Discussion

- What other examples of ATM have you heard about?
- What technologies are in use here that you would consider active traffic management?
- What types of ATM could have a positive impact on operations in the Altamont corridor?

BREAK

INTEGRATED CORRIDOR MANAGEMENT

Integrated Corridor Management

- ► ICM Background and Concepts
- Status of the Federal ICM Initiative and Sites
- ▶ Planning for ICM
 - → Stakeholders
 - Integrating with existing plans and programs
 - → ICM Concept of Operations
 - → Agreements
 - → Modeling and Performance Measures
- ► Integration to Support ICM Strategies

What Is ICM?

- ► Maximize corridor capacity through:
 - New institutional models
 - ▶ New technology
 - More dynamic operational strategies

USDOT ICM Initiative

ICM Pilot Sites:

- San Diego, CA
- Dallas, TX

Key Elements:

- Decision Support Systems
- Institutional Agreements
- Operational Strategies
- Multimodal

ICM Planning Grants:

- I-10, Phoenix, AZ
- I-210, LA/Pasadena, CA
- SR4, Bay Area, CA
- I-95, Broward Co., FL
- I-95/MD295/US1, Baltimore, MD
- NJ Turnpike and US1
- NYC multiple corridors
- I-90 Buffalo-Niagra, NY
- I-84, Portland, OR
- IH-10/US-54/IH-110, El Paso, TX
- IH-35, Austin, TX
- I-15, Salt Lake City, UT
- Northern VA multiple corridors

SANDAG I-15 ICM

- Primary artery for the movement of commuters, goods, and services from north San Diego County to downtown.
- ▶ I-15 Managed Lanes System
- Multi Institutional Cooperation/ Partnerships
- Multi-modal Transportation Improvement Strategies and Mode Shift – BRT, TSP
- ▶ 511, including transit information

I-15 ICM Decision Support "Response Postures"

I-15 ICM Response Plans

- ▶ 156 Alternate Routes
- 260 Local Arterial Intersections
- 18 Metered Interchanges
- 20 Dynamic Message Signs
- 5 BRT stations
- ▶ 20 miles HOT reversible lanes
- 30 miles Traffic Responsive
- ▶ 511 (including app)

Limited set of "point-in-time" Response Plans by:

- Using Asset Restrictions
- Using Availability Conditions
- Using Thresholds to select "next move" relationships
- = 1.5 billion combinations!

Dallas US-75 ICM

- Freeway with continuous frontage roads
- Managed HOV lanes
- ► Dallas North Tollway
- ► Arterials
- Bus Network, Light Rail
- ► Approx. 900 traffic signals
- Multiple TMCs
- ► Regional ATIS (511)

CALTRANS REGIONAL OPERATIONS FORUMS

US 75 ICM Decision Support

THE BENEFITS

Improved travel time reliability for commuters

Enhanced decision making support for operating agencies

Achieves a 20:1 return (\$278.8 million) on the project's cost over 10 years

Less pollution from idling vehicles in congested traffic

USDOT ICM Status Update

- ▶ San Diego and Dallas went "live" in early 2013
- ► Testing and evaluating the DSS in both regions (3-year evaluation)
- ► Independent evaluation
- ► Early lessons:
 - → Agreements are tough. Most challenging part of ICM.
 - Data integration from multiple systems and multiple networks
 - → Determining mode shift is difficult, working through how to evaluate effectiveness
 - → Combinations of strategies also are challenging to evaluate

AZ Loop 101 ICM

- Arizona DOT, Scottsdale, Maricopa County, SRPMIC Tribe
- Event-driven ICM for freeway closures
- Positives:
 - Dense arterial ITS Experienced TMC staff
 - → Provide arterial alt route
 - → REACT to support arterial traffic diversions
- Focus on process improvements
- ▶ No new infrastructure

California Connected Corridors

- ► Initiated in 2011 Statewide Framework
- Focus on planning, implementation, O&M
 - → Implement TSM&O on their most congested corridors (50)
 - □ Evolve Caltrans to real-time operations and management
 - → Enhance partnerships
 - Optimize infrastructure and capacity
 - → Improve overall corridor performance

I-210 Project Corridor (Pilot)

Michigan DOT I-75 Concept of Operations

- Travel time reliability within the corridor (freeways and arterials)
- Improved traveler information
- ► Incident response
- Improved agency coordination
- Coordinated use of resources and technologies
- Public outreach and education on multi-modal transportation options
- CVO through the corridor
- ▶ Developed a ConOps and Requirements (2008)
- Corridor Integration CMM helped guide areas for improvement

MDOT ICM Pilot Corridors

- 2 Pilots on I-75 (Wayne and Oakland Counties); I-696 in Macomb
- Event-based
 - Improve response to major incidents
 - □ Traffic rerouting on arterials
- ITS equipment upgrades and infill
- Signal timing on alt routes
 - Models show freeway recovery times increasing by 15-30 minutes

Stakeholder Roles for ICM

- Identifying the right partners
- Key partners
 - → Freeway management and operations TOC, freeway service patrol, freeway incident response
 - → Arterial management and operations TOC, signal operations
 - → Transit
 - Incident response and management freeway and arterial incident response/law enforcement
 - → MPO planning
 - Others to be determined on a regional level based on operational need
- Leadership commitment key to sustaining partnerships. You already have this!

Leveraging ICM

- ►ITS Plans or Updates/TSMO Planning
- ► Traffic Incident Management Coalitions
- Standing Committee Meetings (ITS Partners)
- Large-scale freeway or arterial improvement projects
- ▶ TIP funding cycles
- ▶ RTP updates
- ► Follow up initiatives from RCTO and other Ops Plans

Plant seeds, build interest, introduce ICM as a collaborative, regional effort

Analysis, Modeling and Simulation

- ▶ Test different scenarios identified in the ConOps
- Used available data and future projections
- Modeled ICM strategies under typical and incident conditions
- Results from the AMS showed:
 - → Improved mobility, particularly during NRC
 - → Improved reliability 2% 23%
 - → Reduced toxic emissions and fuel consumption
 - → Strong potential for fiscal benefits

ICM Performance Measures

- ▶ National evaluation is looking at the following MOEs:
 - → Vehicle and person throughput
 - → Travel times and travel time index
 - → Standard deviation of travel time
 - → 80th, 90th, and 95th percentile travel times
 - → Buffer and Planning Indices
 - → Traveler Response
 - Safety benefits
- ▶ Other ICM Objectives could be...
 - □ Traveler information
 - → TIM
 - → Data sharing
 - → Institutional participation

Demonstration Site Measures

San Diego

- ▶ Travel Time
- Delay
- ► Throughput
- Reliability and Variance of Travel Time
- Safety
- Emissions and Fuel Consumption

Dallas

- ▶ Travel Time Reliability
- Increase Corridor Throughput
- Improve Incident Management
- Enable Intermodal Travel Decisions

Interagency Agreements

- Essential for ICM and multi-agency operations strategies
- ▶ New operations models, potential for joint operations
- Data sharing and system connectivity
- ▶ Often, the most complex part of an ICM program and strategy
- ► Examples I-80, SANDAG, AZ
 - Operating and operating authority
 - → Data sharing parameters

 - → Decision making

Real-time Data Sharing to Support ICM

- ▶ Regional strategies for sharing data
- ▶ What information do partners need?
- Operations data to support ICM
 - → Real-time freeway, arterial and transit operations
 - → Real-time strategy implementation information
 - → Agency notifications
- Overcoming institutional barriers to effective data sharing
 - → SANDAG (San Diego/D11)
 - → RITIS (I-95)
 - → RADS (Arizona)

SANDAG Data Hub

CALTRANS REGIONAL OPERATIONS FORUMS

Regional Integrated Transportation Information System (RITIS)

Regional Archived Data System

Staffing and Training

- Staff capacity building
 - → Current staff vs. supplementing staff
 - Leveraging available regional technical staff resources
- Staff training needs for ICM and next-generation operations
 - → New systems and new operational approaches
 - → Multi-agency training strategies essential

ICM Resources

- California Connected Corridors
 - → http://connected-corridors.berkeley.edu/
- ► FHWA/USDOT
 - → its.dot.gov/icms
 - → ICM Knowledge and Technology Transfer (KTT)
 - Guidance documents for each stage planning, stakeholder engagement, design, test plan, modeling, training, lessons learned
 - → Fact sheets

Managing a Corridor Considerations

- ► What is the status of the current ICM planning efforts in D10?
- What are your initial considerations?
- How would you go about developing a plan for corridor management?
- ► Who would you involve?
- ► What technologies/systems/actions would you consider?
- What are the major gaps or challenges you see in implementing the plan?
- What would you do to give your plan the best chance of success, especially considering the gaps/challenges?

Breakout Group Activity

- If ICM is implemented, how do you see agency roles and responsibilities changing?

 - → Arterial
 - → MPO/Planning
 - → Other partners
- Are there other strategies that the region should explore for ICM on the Altamont Corridor?
- ► Based on what you have heard over the last 2 days, what <u>institutional</u> and <u>technical</u> challenges do you see for ICM on the Altamont (or other) corridors?

